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The phase space for a non-dissipative systems has a
frozen-in flux

N.B.: Steady-state MHD frozen-in law is equivalent to
Lu(B · dS) = (∇× (B × u)) · dS = 0.



Flux tensor (aka presymplectic form) defines geometry of
phase space



(pre)Symplectic integrators approximate flow while freezing
flux exactly

Definition: symplectic integrator

A symplectic integrator for a Hamiltonian ODE ż i = X i (z) is an
approximation of the time-advance map

F i (z0, h) ≈ z i (z0, h),

that satisfies the frozen-flux condition exactly

∂F k1

∂z i0
ωk1 k2(F (z0, h))

∂F k2

∂z j0
= ωij(z0).



Symplectic integrators can readily be found when ωij is
canonical

The canonical case

ωij =

(
0 1
−1 0

)
symplectic integrators of any order readily constructed using

various techniques



But the non-canonical case is poorly undestood

The noncanonical case

ωij(z) = anything antisymmetric that satisfies:

∂iωjk(z) + ∂jωki(z) + ∂kωij(z) = 0

most interesting systems fall into noncanonical case

One proposed method∗ for (almost) general case, but proof of
symplectic property difficult to understand

∗ M. Kraus, “Projected variational integrators for degenerate Lagrangian systems,” (arXiv:1708.07356, 2017)



We have developed a new approach
to structure-preserving integration
of non-dissipative systems that

assumes only:

1 Non-degeneracy: ωij invertible
2 Exactness: ωij = ∂jθi − ∂iθj











Part I: Symplectic Lorentz embedding



Hamilton’s equation has an electromagnetic interpretation

Hamilton’s equation

V iωij = ∂jH



Hamilton’s equation has an electromagnetic interpretation

Hamilton’s equation

V i︸︷︷︸
Generator of dynamics

ωij = ∂jH



Hamilton’s equation has an electromagnetic interpretation

Hamilton’s equation

V i ωij︸︷︷︸
flux tensor

= ∂jH



Hamilton’s equation has an electromagnetic interpretation

Hamilton’s equation

V iωij = ∂jH︸︷︷︸
Hamiltonian



Hamilton’s equation has an electromagnetic interpretation

Hamilton’s equation

V iωij = ∂jH︸︷︷︸
Hamiltonian

electrostatic field



Hamilton’s equation has an electromagnetic interpretation

Hamilton’s equation

V i ωij︸︷︷︸
flux tensor

= ∂jH

magnetostatic field



Hamilton’s equation has an electromagnetic interpretation

Electromagnetic analogue

v × B = −E



Hamilton’s equation has an electromagnetic interpretation

Electromagnetic analogue

m

q
v̇ = E + v × B

Zero-mass limit of Lorentz force



This motivates the study of charged particle motion in
these “electromagnetic fields”

Lorentz force “Symplectic” Lorentz force

E dH
B ω

1
2m|v |

2 ???

But what to do about the mass? (remember E = mc2)



We define mass (kinetic energy) by introducing
“compatible almost complex structure”

Def. (almost complex structure)

An almost complex structure is a tensor field Jij such that

JikJkj = −δij .

i.e. J is a square root of −1.



We define mass (kinetic energy) by introducing
“compatible almost complex structure”

Def. (compatible almost complex structure)

Given a flux tensor ωij , a compatible almost complex structure
is an almost complex structure Jij such that

gij = ωikJkj

is symmetric positive definite. i.e. gij must be a metric tensor.



We define mass (kinetic energy) by introducing
“compatible almost complex structure”

Thm. (existence of compatible almost complex structures)

If ωij is a non-degenerate flux tensor there exists a (non-unique)
compatible almost complex structure.



We define mass (kinetic energy) by introducing
“compatible almost complex structure”

Lorentz force “Symplectic” Lorentz force

E dH
B ω

1
2m|v |

2 1
2ε g(V ,V ) ≡ 1

2ε ω(V , JV )



The symplectic Lorentz system parallels the usual Lorentz
force law

Original Hamiltonian system

dZ

dt
= V (Z ), V · ω = dH



The symplectic Lorentz system parallels the usual Lorentz
force law

Symplectic Lorentz system

dZ

dt
= V , ε

DV

dt
= JV −∇H



properties of symplectic Lorentz system

Hamiltonian on (Z ,V )-space.

Flux tensor: Ω = ω + εΩ0

Hamiltonian:H = H(Z ) + 1
2 ε g(V ,V )



properties of symplectic Lorentz system

Hamiltonian on (Z ,V )-space.

Flux tensor: Ω = ω + εΩ0

Hamiltonian:H = H(Z ) + 1
2 ε g(V ,V )

As ε→ 0 dynamics becomes periodic

In terms of microscopic time τ = t/ε:

dZ

dτ
= εV ,

DV

dτ
= JV −∇H

→dZ

dτ
= 0,

dV

dτ
= JV −∇H

⇒Z (τ) = Z (0), V (τ) = −J∇H + exp(τ J)[V (0) + J∇H]

⇒Periodic because J2 = −1!



properties of symplectic Lorentz system

Hamiltonian on (Z ,V )-space.

Flux tensor: Ω = ω + εΩ0

Hamiltonian:H = H(Z ) + 1
2 ε g(V ,V )

As ε→ 0 dynamics becomes periodic

Has an adiabatic invariant:

µ(Z ,V ) = 1
2 g(V + J∇H,V + J∇H)

Thm. (adiabatic invariance)

For each non-negative k ∈ Z

|µ(t)− µ(0)| = O(ε), t ∈ [0,Ck/ε
k ]

JWB, E. Hirvijoki, J. Math. Phys. 62: 093506 (2021)



µ = 0 dynamics approximates original system

Corollary:

If µ(= 1
2g(V + J∇H,V + J∇H)) = 0 then V = −J∇H.

In particular, if µ(0) = 0 then for each k

dZ

dt
= −J∇H + O(ε1/2), t ∈ [0,Ck/ε

k ]



µ = 0 dynamics approximates original system

Corollary:

If µ(= 1
2g(V + J∇H,V + J∇H)) = 0 then V = −J∇H.

In particular, if µ(0) = 0 then for each k

dZ

dt
= −J∇H + O(ε1/2), t ∈ [0,Ck/ε

k ]

N.B.: V · ω = dH iff V = −J∇H.



µ = 0 dynamics approximates original system



Part II: Time discretization of
symplectic Lorentz system
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It is easy to satisfy the frozen-flux condition for Ω, even
though ω presented difficulties

Prop. (symplectic maps for symplectic Lorentz system)

If F : (Z ,V ) 7→ (Z ,V ) satisfies

θi (Z ) + ε gij(Z )V
j

= ∂
Z

iS(Z ,Z )

θi (Z ) + ε gij(Z )V j = −∂Z iS(Z ,Z )

for some S(Z ,Z ), then Ω is frozen into F .



It is easy to satisfy the frozen-flux condition for Ω, even
though ω presented difficulties

Prop. (symplectic maps for symplectic Lorentz system)

If F : (Z ,V ) 7→ (Z ,V ) satisfies

θi (Z ) + ε gij(Z )V
j

= ∂
Z

iS(Z ,Z )

θi (Z ) + ε gij(Z )V j = −∂Z iS(Z ,Z )

for some S(Z ,Z ), then Ω is frozen into F .

Doubling dimension made constructing symplectic maps easy!



Where do we get S?



Symplectic Lorentz system can be integrated with help of
Hamilton-Jacobi theory

L(Z , Ż ) =
1

2
εg(Ż , Ż ) + θi (Z )Ż i − H(Z )︸ ︷︷ ︸

Lagrangian for symplectic Lorentz system



Symplectic Lorentz system can be integrated with help of
Hamilton-Jacobi theory

L(Z , Ż ) = 1
2εg(Ż , Ż ) + θi (Z )Ż i − H(Z )

S(Z ,Z ) =

ˆ ~

0
L(Z (t), Ż (t)) dt

Z (t) solves EL equations w/ (Z (0),Z (~)) = (Z ,Z )

J. E. Marsden and M. West, Acta Numerica 10: 357–514 (2001)



Symplectic Lorentz system can be integrated with help of
Hamilton-Jacobi theory

L(Z , Ż ) = 1
2εg(Ż , Ż ) + θi (Z )Ż i − H(Z )

S(Z ,Z ) =

ˆ ~

0
L(Z (t), Ż (t)) dt︸ ︷︷ ︸

Jacobi’s solution of Hamilton-Jacobi equation

Z (t) solves EL equations w/ (Z (0),Z (~)) = (Z ,Z )

this S generates t = ~ flow of symplectic Lorentz system

J. E. Marsden and M. West, Acta Numerica 10: 357–514 (2001)



Symplectic Lorentz system can be integrated with help of
Hamilton-Jacobi theory

L(Z , Ż ) = 1
2εg(Ż , Ż ) + θi (Z )Ż i − H(Z )

S(Z ,Z ) =

ˆ ~

0
L(Z (t), Ż (t)) dt

Z (t) solves EL equations w/ (Z (0),Z (~)) = (Z ,Z )

we should approximate this integral

J. E. Marsden and M. West, Acta Numerica 10: 357–514 (2001)



We have derived a useful approximation

Thm.

With N � 1, θ0/2π 6∈ Q, and

~ =
1

(2πN + θ0)
, ε =

1

(2πN + θ0)2
,

S(Z ,Z ) =

ˆ Z

Z
ϑ− ~H(x) + ~2gx(XH(x), ξ)

− 1

12
~2∂kωj`(x)X k

H(x)X j
H(x) ξ`

− 1

4

(
sin θ0

1− cos θ0

)
gx(ξ − ~XH(x), ξ − ~XH(x))

x = (Z + Z )/2, ξ = Z − Z ,

agrees with Jacobi’s solution to second-order in ~.



Why these choices for ~ and ε?



ε = ~2 ensures fastest timescale is not resolved

Symplectic Lorentz system

dZ

dt
= V , ε

DV

dt
= JV −∇H

⇓

B

SL system oscillates rapidly on O(ε) timescale



ε = ~2 ensures fastest timescale is not resolved

Symplectic Lorentz system

dZ

dt
= V , ε

DV

dt
= JV −∇H

⇓

B

We don’t want to resolve these oscillations!



~ = (2πN + θ0)−1 is chosen to ensure stability



~ = (2πN + θ0)−1 is chosen to ensure stability

This choice of ~ ensures answer is NO
over very large time intervals



~ = (2πN + θ0)−1 is chosen to ensure stability

To understand why, we need some more theory...



Part III: Nearly-periodic maps



Nearly-periodic maps are closely related to U(1) actions

Def. (circle action)

A U(1) action on a manifold M is a 1-parameter map
Φθ : M → M such that

Φ0 = Φ2π = idM

Φθ1+θ2 = Φθ1 ◦ Φθ2



Nearly-periodic maps are closely related to U(1) actions

Example 1: translation along S1

Let M = S1 = R mod 2π. Typical point ζ ∈ S1

Φθ(ζ) = ζ + θ



Nearly-periodic maps are closely related to U(1) actions

Example 2: rotation about fixed axis in R3

 

 

Φθ(x) = (ez · x) ez + cos θ (ez × x)× ez + sin θ ez × x



Nearly-periodic maps limit to rotations along U(1) actions

Definition 4: (nearly-periodic map)

A mapping Fγ : Z → Z with vector parameter γ is a
nearly-periodic map if there is a U(1)-action Φθ : Z → Z and an
angle θ0 ∈ U(1) such that

F0 = Φθ0 .

If θ0/(2π) is rational, Fγ is resonant. Otherwise it is
non-resonant.

Important class of examples:

If Lγ : Z → Z satisfies L0 = idZ then Fγ = Lγ ◦ Φθ0 is
nearly-periodic.



θ 7→ θ + θ0

θ0 = 2π(7/13)

θ0 = 2πφ



Discrete nearly-periodic structure ⇒ discrete-time U(1)
symmetry

Theorem 4: (discrete-time all-orders U(1) symmetry)

Each non-resonant nearly-periodic map Fγ admits a formal U(1)
symmetry. Equivalently, there exists a power-series vector field
Rε = R0 + R1[γ] + R2[γ, γ] + . . . such that

R0 = ∂θΦθ |θ=0

F ∗
γRγ = Rγ

exp(2πLRγ ) = id



Discrete nearly-periodic structure ⇒ discrete-time U(1)
symmetry

Corollary: (discrete-time adiabatic invariance)

If a non-resonant nearly-periodic map is also Hamiltonian* then it
admits an adiabatic invariant. Equivalently, there exists a power
series scalar function µγ = µ0 + µ1[γ] + µ2[γ, γ] + . . . such that

µγ(Fγ(z))− µγ(z) = 0

to all orders in γ for each z ∈ Z .



Proposition.

Our integrator is symplectic nearly-periodic.
See arXiv:2112.08527 (submitted to JNLS) for details



properties of symplectic Lorentz map

Symplectic on (Z ,V )-space.

Flux tensor: Ω = ω + ~2 Ω0



properties of symplectic Lorentz map

Symplectic on (Z ,V )-space.

Flux tensor: Ω = ω + ~2 Ω0

Non-resonant nearly-periodic map



properties of symplectic Lorentz map

Symplectic on (Z ,V )-space.

Flux tensor: Ω = ω + ~2 Ω0

Non-resonant nearly-periodic map

Has a discrete-time adiabatic invariant:

µ(Z ,V ) = 1
2 g(V + J∇H,V + J∇H)

Thm. (discrete-time adiabatic invariance)

For each non-negative k ∈ Z

|µ(n~)− µ(0)| = O(ε), n~ ∈ [0,Ck/ε
k ]

JWB, E. Hirvijoki, M. Leok In Preparation (2021)



properties of symplectic Lorentz map

Symplectic on (Z ,V )-space.

Non-resonant nearly-periodic map

Has a discrete-time adiabatic invariant:

Enjoys persistent approximation property

Thm. (Persistent approximation property)

Let C be a compact set and let (Z ,V~) ∈ C be a smooth
~-dependent point in C that is positively-contained for each ~.
Also assume V~ = XH(Z ) + O(~1/2). For each N > 0 there is an
integer k∗(~,N) = O(~−N) such that

Z k+1 = Z k + ~XH(Z k) +
1

2
~2 DXH(Z k)[XH(Z k)] + O(~5/2)

V k+1 = XH(k+1) + O(~1/2),

for each k ∈ [0, k∗(~,N)].



µ(Z ,V ) =
1
2 g(V + J∇H,V + J∇H)

⇒ Can’t wander away from
µ = 0 without increasing µ



Dimension doubling without NPM constraint leads to
instabilities

Example: “non-canonical pendulum”

C. L. Ellison et al. Phys. Plasmas 25: 052502 (2018).



Dimension doubling without NPM constraint leads to
instabilities

Example: “non-canonical pendulum”

C. L. Ellison et al. Phys. Plasmas 25: 052502 (2018).



Instabilities can be eliminated using nearly-periodic maps!



General technique produces new structure-preserving
integrator for guiding center dynamics

ω = B(x , y) dx ∧ dy , H = µB(x , y)

B(x , y) = 2 + y2 − x2 +
1

4
x4



General technique produces new structure-preserving
integrator for guiding center dynamics



Summary











END


